Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Институт/Факультет	
наименование	института (факультета)
Кафедра наименование кафедра	ы (структурного подразделения)
Отчет по лабораторной работе	
по дисциплине	
	Выполнил студент
	(подпись)/ И.О. Фамилия
	(Дата)
	Принял
	(подпись)/ И.О. Фамилия

Цель работы: изучить химические свойства металлов научиться составлять уравнения реакций взаимодействия металлов с водой, кислотами, щелочами.

Задание: провести реакции взаимодействия металлов с водой, щелочами, разбавленными и концентрированными растворами серной и азотной кислот. Выполнить требования к результатам опытов, оформить отчет, решить задачу.

Выполнение работы

Все металлы по своим химическим свойствам являются восстановителями, т.е. они отдают электроны при протекании химической реакции. Атомы металлов относительно легко отдают валентные электроны и переходят в положительно заряженные ионы.

1.1. Взаимодействие металлов с простыми веществами

При взаимодействии металлов с простыми веществами в качестве окислителей обычно выступают неметаллы. Металлы реагируют с неметаллами с образованием бинарных соединений.

1. При взаимодействии с кислородом металлы образуют оксиды:

$$2Mg + O_2 \stackrel{T}{=} 2MgO,$$

$$2Cu + O_2 \stackrel{T}{=} 2CuO.$$

2. Металлы реагируют с *галогенами* (F_2 , Cl_2 , Br_2 , I_2) с образованием солей галогеноводородных кислот:

$$2Na + Br_2 = 2NaBr$$
, $Ba + Cl_2 = BaCl_2$, $2Fe + 3Cl_2 \stackrel{T}{=} 2FeCl_3$.

3. При взаимодействии металлов с *серой* образуются сульфиды (соли сероводородной кислоты H_2S):

$$Hg + S = HgS$$
, $Zn + S = ZnS$.

4. С водородом взаимодействуют активные металлы с образованием гидридов металлов, которые являются солеподобными веществами:

$$2Na + H_2 \stackrel{T}{=} 2NaH,$$

$$Ca + H_2 \stackrel{T}{=} CaH_2.$$

В гидридах металлов водород имеет степень окисления (-1).

Металлы могут взаимодействовать и с другими неметаллами: азотом, фосфором, кремнием, углеродом с образованием соответственно нитридов, фосфидов, силицидов, $\frac{T}{\kappa apбидов}. \ Haпример: 3Mg + N_2 = Mg_3N_2, 3Ca + 2P = Ca_3P_2, 2Mg + Si = Mg_2Si,$

$$4Al + 3C \stackrel{T}{=} Al_4C_3$$
.

5. Металлы могут также взаимодействовать между собой с образованием интерметаллических соединений:

$$2Mg + Cu = Mg_2Cu$$
,

$$2Na + Sb = Na2Sb$$
.

Интерметаллическими соединениями (или *интерметаллидами*) называют соединения, образуемые между собой элементами, которые относятся обычно к металлам.

1.2. Взаимодействие металлов с водой

Взаимодействие металлов с водой – это окислительно-восстановительный процесс, в котором металл является восстановителем, а вода выполняет роль окислителя. Реакция протекает по схеме:

$$Me + nH_2O = Me(OH)_n + n/2 H_2.$$

С водой при обычных условиях взаимодействуют щелочные и щелочноземельные металлы с образованием растворимых оснований и водорода:

$$2Na + 2H_2O = 2NaOH + H_2,$$

$$Ca + 2H_2O = Ca(OH)_2 + H_2$$
.

Магний реагирует с водой при нагревании:

$$Mg + 2H_2O = Mg(OH)_2 + H_2$$
.

Опыт 1. Взаимодействие металлов с водой.

Реакция натрия с водой.

$$2Na+2H_2O = 2NaOH+H_2$$

 $2Na^++2H_2O = 2Na^++OH^-+H_2^+$
 $OH^-+H^+=H_2O$

- 1) Когда натрий реагирует с водой, происходит быстрая и интенсивная реакция. Натрий активно взаимодействует с молекулами воды, выделяя при этом большое количество тепла и газообразного водорода.
- 2) Активные металлы реагируют с водой, образуя гидроксид и выделяются водород. К таким металлам относятся натрий (Na), калий (K), литий (Li) и цезий (Cs).

Опыт 2. Действие разбавленной и концентрированной серной кислоты на металлы.

Реакция железа с разбавленной серной кислотой.

1)
$$Fe+H_2SO_{4(pa36)} = FeSO_4+H_2$$

$$Fe^{0} + 2H^{+} + SO_{4}^{2-} = Fe^{2+} + SO_{4}^{2-} + H_{2}$$

$$Fe^{0} + 2H^{+} = Fe^{2+} + H_{2}^{+}$$

Реакция цинка с разбавленной серной кислотой.

2)
$$Zn+H_2SO_{4(pa36)} = ZnSO_4+H_2$$

 $Zn^0+2H^++SO_4^{2-} = Zn^{2+}+SO_4^{2-}+H_2$
 $Zn^0+2H^+ = Zn^{2+}+H_2$
3) $Cu + H_2SO_{4(pa36)} = /$

T.к. медь в элекрохимическом ряду стоит после водорода. Си с H_2SO_4 разб не вступает в реакцию.

Взаимодействие кислот с металлами возможно, если металл стоит до водорода в ряду напряжений металлов, и если на поверхности металла не образуется нерастворимой пленки, а продуктами реакции являются соль и водород.

Реакция цинка с концентрированной серной кислотой.

$$3Zn+8H^{+}+4SO_{4}^{2-}=3Zn^{2+}+SO_{4}^{2}-+H_{2}+S^{2-}+4H_{2}O_{4}^{2}-+S$$

$$Zn^{0} - 2e^{-}=Zn^{2+}$$
 - BOCCT.

$$S^{6+}$$
 - $6e^{-} = S^{0}$ – окисл.

Реакция меди с концентрированной кислотой.

2)
$$Cu + 2H_2SO_{4(KOHIL)} = CuSO_4 + SO_2 + 2H_2$$

 $Cu + 2H^{(+)} + SO4^{(2-)} = Cu^{(2+)} + SO4^{(2-)} + H2$
 $Cu + 2H^{(+)} = Cu^{(2+)} + H2$

4) Металлы реагируют с концентрированной серной кислотой, образуя соответствующие соли и выделяеся диоксид серы и водород. При этом металлический сплав может быть разложен на отдельные компоненты.

Опыт 3. Действие разбавленной и концентрированной азотной кислоты на металлы.

1) Реакция цинка с разбавленной азотной кислотой.

$$4Zn + 10HNO3(pa36.) = 4Zn(NO3)2 + N2O\uparrow + 5H2O$$
 $Zn^{0} - 2\bar{e} \longrightarrow Zn^{+2} \quad 4 \mid 2 \mid$ восстановитель (окисление) $N^{+5} + 4\bar{e} \longrightarrow N^{+} \quad 4 \mid 1 \mid$ окислитель (восстановление)

Реакция меди с разбавленной азотной кислотой.

$$3Cu + 8HNO_3(pa36.) = 3Cu(NO_3)_2 + 2NO\uparrow + 2H_2O$$
 $Cu^0 - 2\bar{e} \longrightarrow Cu^{+2} \qquad 6 \qquad 2 \qquad Bocctaнoвитель (окисление)$
 $N^{+5} + 3\bar{e} \longrightarrow N^{2+} \qquad 6 \qquad 1 \qquad oкислитель (восстановление)$

2) Реакция цинка с концентрированной азотной кислотой.

$$Zn + 4HNO3(конц.) = Zn(NO3)2 + 2NO2↑ + 2H2O$$
 $Zn^0 - 2\bar{e} \longrightarrow Zn^{+2} \ 2 \ 1 \ | восстановитель (окисление)$ $N^{+5} + 1\bar{e} \longrightarrow N^{+4} \ 2 \ 2 \ | окислитель (восстановление)$

Реакция Меди с концентрированной азотной кислотой $Cu + 4HNO_3(конц.) = Cu(NO_3)_2 + 2NO\uparrow + 2H_2O$

$$Cu^0$$
 - $2\bar{e} \longrightarrow Cu^{+2}$ 2 | 2 | восстановитель (окисление) $N^{+5} + 1\bar{e} \longrightarrow N^{4+}$ 2 | 1 | окислитель (восстановление)

3) Металлы реагируют с концентрированной и разбавленной азотной кислотой, образуя соответствующие нитраты и выделяя оксидные газы. При этом, чем более активен металл, тем быстрее протекает реакция.

Опыт 4. Действие щелочи на металлы.

$$Zn + 2NaOH + 2H_2O \longrightarrow Na2[Zn(OH)_4] + H_2\uparrow$$
 $Zn^0 - 2\bar{e} \longrightarrow Zn^{+2} \qquad 2 \mid 1$ восстановитель (окисление) $2H^+ + 2\bar{e} \longrightarrow H2^0 \qquad 2 \mid 1$ окислитель (восстановление)

2AI + 6NaOH
$$^{(t)}$$
 \rightarrow 2Na₃AIO₃ + 3H₂↑ AI⁰ - 3ē \rightarrow AI⁺³ 6 2 восстановитель (окисление) 2H+ + 2ē \rightarrow H₂⁰ 6 3 окислитель (восстановление)

Металлы, которые реагируют с щелочами, включают алюминий (Al), калий (K), натрий (Na), магний (Mg) и цезий(Cs). Реакция металла с щелочью приводит к образованию гидроксида металла и выделению водорода.

Вывод: В ходе данной лабораторной работы мы изучили свойства металлов, свойства кислот, узнали разницу реакций с разбавленной и концентрированной кислотой а также с щелочью.